Quantum dots, a phenomenon in quantum physics that alters the energy of electrons and changes the properties of particles, caught the attention of the Royal Swedish Academy of Sciences (KVA) for the 2023 Nobel Prize in Chemistry.
Quantum dots, a phenomenon in quantum physics that alters the energy of electrons and changes the properties of particles, caught the attention of the Royal Swedish Academy of Sciences (KVA) for the 2023 Nobel Prize in Chemistry. Alexei Ekimov and Louis Brus received the award for their discovery; Moungi Bawendi, for developing its applications. With their work, “in equal shares,” said the Secretary General of KVA Hans Ellegren, the three scientists have laid the foundations of nanotechnology, a tool that we see today in our homes, on televisions and LED lamps, or in laboratories and hospitals for designing new drugs or new strategies against cancer.
Researchers who follow their instincts and achieve slow results while trying to break barriers have little support. They replace it with persistence. This is the story of Katalin Karikó and Drew Weissman. What was once a dream in their minds was later a success.
Researchers who follow their instincts and achieve slow results while trying to break barriers have little support. They replace it with persistence. This is the story of Katalin Karikó and Drew Weissman. What was once a dream in their minds was later a success. Their work together for decades was essential to achieving mRNA vaccines, and their perseverance was rewarded today with the 2023 Nobel Prize in Medicine.
A new gene editing method uses the CRISPR technique to modify the cells of an organ in vivo, creating a mosaic used to identify the effects of each altered gene. Scientists from the Swiss Federal Institute of Technology (ETH) in Zürich developed this technology called AAV-Perturb-seq, based on adeno-associated virus (AAV) to target, edit and analyze single-cell genetic perturbations.
Arialys Therapeutics Inc. launched this month with $58 million in seed funding, an experimental compound it is developing for autoimmune encephalitis and autoimmune psychosis, and high aspirations for its field. “Yes, I want to treat these patients, I want these patients to have a better life. But I also want drug discovery and development folks to think differently about discovering new drugs for the CNS,” Jay Lichter told BioWorld.
Proteome analysis with artificial intelligence has made it possible to create a catalog of all possible missense mutations in the human genome to predict diseases.
Proteome analysis with artificial intelligence has made it possible to create a catalog of all possible missense mutations in the human genome to predict diseases. The new Alphamissense tool from the technology company Google Deepmind, available online, will allow scientists to refine diagnoses and design more tailored treatment strategies for patients suffering from pathologies associated with these variants.
By creating a new mouse model of Alzheimer’s disease that better recapitulated how the disease plays out in humans, investigators at KU Leuven have gained new insights into how amyloid plaques, tau tangles and neuronal death are related at the molecular level.
Scientist Ian Wilmut, who led a team from Scotland’s Roslin Institute and biotech company PPL Therapeutics plc to clone Dolly the Sheep in 1996, died on Sept. 10 at age 79. Dolly was the first mammal cloned from an adult cell taken from the mammary gland of a 6-year-old Finn Dorset sheep and an egg cell from a Scottish Blackface sheep.